CHEM 361A - Lecture 17 Activity The Approach to Equilibrium

In Class

1. Consider the interconversion of the 'boat' and 'chair' conformations of cyclohexane

Boat
$$\underset{k_r}{\overset{k_f}{\underset{k_r}{\longrightarrow}}}$$
 Chair

- (a) If the equilibrium constant, K, at 305 K is 1×10^2 and the activation energy, E_a , for the conversion of the chair conformer to the boat conformer (reverse reaction) is 35 kJ mol⁻¹ determine the forward and reverse rate constants and the activation energy for the forward reaction at 305 K. Assume that the Arrhenius Equation prefactor, A, is 1×10^{12} s⁻¹.
- (b) Find the forward and reverse rate constants at 298 K. Assume that the Arrhenius Equation prefactor, A, is $1 \times 10^{12} \text{ s}^{-1}$.
- (c) What is the rate law expression for the rate of change of the concentration of the chair conformation?
- (d) If at t = 0 the [Boat] = [Boat]₀ and [Chair] = 0, show that the integrated rate law expression for [Chair] is

$$[C] = \frac{k_f (1 - e^{-(k_f + k_r)t})[B]_0}{k_f + k_r}$$

- (e) What is τ for the return to equilibrium when the temperature is changed from 305 K to 298 K?
- (f) Determine the integrated rate law expression for [Boat]
- (g) Determine the equilibrium concentrations of the Boat and Chair conformations by using their integrated rate law expressions as $t \to \infty$ at 298 K.
- (h) If the temperature is suddenly increased from 298 K to 1000 K, determine the new equilibrium concentrations and the relaxation constant, τ .

Homework

2. You have an equilibrium process where

$$\mathbf{A} \xleftarrow[\mathbf{k}_r]{\mathbf{k}_r} \mathbf{P}$$

Initially the forward rate constant is equal to 23.7 s^{-1} and the reverse rate constant is equal to 7.8 s^{-1} . Suddenly, the temperature is changed from 345.2 K to 367.1 K. If the activation energy of the forward process is 24.1 kJ mol^{-1} , and the activation energy of the reverse process is 13.6 kJ mol^{-1} , determine

- (a) The equilibrium constant, K, at 367.1 K. (K = 3.78)
- (b) The time constant, τ for the return to equilibrium. ($\tau = 0.0202$ s)
- 3. Consider the reaction

$$A + B \xrightarrow[k_r]{k_r} P$$

The temperature was suddenly changed on the system at equilibrium. The time constant was measured to be 310 μ s, the new equilibrium constant, K, was found to be 0.70, and the new equilibrium concentration of $[P]_{eq} = 0.20$ M.

- (a) If $[A]_{eq} = [B]_{eq}$, determine $[A]_{eq}$ and $[B]_{eq}$. ($[A]_{eq} = [B]_{eq} = 0.535$)
- (b) Write an expression of $\frac{d[P]}{dt}$ using rate laws. Then define [P], [A], and [B] in terms of the new equilibrium and the advancement of the process towards equilibrium, substitute into your rate law expression and integrate in order to show that

$$\tau = [k_r + k_f([A]_{eq} + [B]_{eq})]^{-1}$$

Hint: Prior to integrating, you will have higher order terms of x. You may assume those are small and disregard them.

(c) Determine k'_f and k'_r for the new temperature. $(k'_r = 1844 \text{ s}^{-1} \text{ and } k'_f = 1291 \text{ s}^{-1}).$