CHEM 361A - Lecture 4 Activity Enthalpy

In Class

1. Make the following table and fill in as much as you can:

	Isothermal	Adiabatic	Isobaric	Isochoric
q				
117				

Table 1: Table of thermodynamic properties.

- 2. Consider an isothermal, reversible expansion of 1.5 moles of Neon gas.
 - (a) What is the $C_{p,m}$ for this gas?

 $\frac{\Delta U}{\Delta H}$

- (b) If the gas expands from 1.3 L to 5.4 L against an external pressure of 1 atm, what is the ΔH of the process? Assume that Neon behaves ideally.
- 3. Calculate the standard enthalpy of formation of diamond, given that:
 - C(graphite) + O₂ \longrightarrow CO₂(g) $\Delta_r H^{\circ} = -393.5 \text{ kJ mol}^{-1}$
 - C(diamond) + O₂ \longrightarrow CO₂(g) $\Delta_r H^{\circ} = -395.4 \text{ kJ mol}^{-1}$
- 4. Given the following two combustion reactions:
 - $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$
 - $C_2H_4(g) + 6O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(g)$

which one yields the larger explosion at 1 bar?

5. The difference between ΔH and ΔU

At 373.15 K and 1 atm, the volume of liquid water and steam are 1.88×10^{-5} m³ and 3.06×10^{-2} m³, respectively. Given that the heat of vapourization (Δ_{vap} H) of water is 40.79 kJ mol⁻¹, calculate Δ U for 1 mol in the following process:

$$H_2O(l, 373.15 \text{ K}, 1 \text{ atm}) \longrightarrow H_2O(g, 373.15 \text{ K}, 1 \text{ atm})$$

Homework

- 6. Calculating ΔH
 - (a) If 3.0 moles of Argon gas (a monatomic gas) is heated from 298 K to 368 K, determine ΔH for this process. ($\Delta H = 4365$ J)
 - (b) Calculate the enthalpy of formation of naphthalene (C₁₀H₈) based on the following combustion reaction ($\Delta H_f^{\bullet} = 72.7 \text{ kJ mol}^{-1}$):

 $C_{10}H_8(s) + 12O_2(g) \longrightarrow 10CO_2(g) + 4H_2O(l) \qquad \Delta_r H^{\circ} = -5151.0 \text{ kJ mol}^{-1}$

(c) Consider the following reaction:

 $2 \operatorname{CH}_{3}\operatorname{OH}(\mathbf{l}) + 3 \operatorname{O}_{2}(\mathbf{g}) \longrightarrow 4 \operatorname{H}_{2}\operatorname{O}(\mathbf{l}) + 2 \operatorname{CO}_{2}(\mathbf{g}) \qquad \Delta_{r} H^{\circ} = -1452.8 \text{ kJ mol}^{-1}$

What is the value of $\Delta_r H^{\diamond}$ if

- i. the order of the reaction is reversed? ($\Delta_r H^{\circ} = 1452.8 \text{ kJ mol}^{-1}$)
- ii. water vapour instead of liquid water is the product? ($\Delta_r H^{\circ} = -1276.8 \text{ kJ} \text{ mol}^{-1}$)
- 7. Calculate $\Delta_r H^{\oplus}$ (206.2 kJ mol⁻¹) and $\Delta_r U^{\oplus}$ (201.2 kJ mol⁻¹) at 298.15 K for the following reaction

$$CH_4(g) + H_2O(g) \longrightarrow CO(g) + 3H_2(g)$$

- 8. Kirchhoff's Law
 - (a) The hydrogenation for ethylene is

$$C_2H_4(g) + H_2(g) \longrightarrow C_2H_6(g)$$

Calculate the change in enthalpy of hydrogenation from 298 K to 398 K. The values of $C_{p,m}^{\bullet}$ for ethylene, ethane and hydrogen are 43.6 J K⁻¹ mol⁻¹, 52.7 J K⁻¹ mol⁻¹ and 28.8 J K⁻¹ mol⁻¹, respectively. Assume the heat capacities are temperature independent. $(\Delta_r H^{\bullet}(T') - \Delta_r H^{\bullet}(T) = -1970 \text{ J mol}^{-1})$

(b) The standard molar enthalpy of formation of molecular oxygen (O₂) at 298 K is zero. What is the value at 315 K? Hint: Use $C_{p,m} = 29.4 \text{ J K}^{-1} \text{ mol}^{-1}$. $(\Delta_r H^{\circ}(315K) = 500 \text{ J mol}^{-1})$