CHEM 361A - Lecture 8 Activity Free Energies

In Class

1. When solutions containing DNA strands with complementary sequences are mixed, the strands react to form double helices. This process is illustrated in Figure 1

Figure 1: Scheme of DNA mixing process.

- (a) Through the reaction process illustrated in Figure 1, did the entropy go up or down?
- (b) If the reaction process is spontaneous, what must the sign for ΔH be?

C25 < 7

- 2. As an approximation, we can assume that proteins exist either in native (or physiologically functioning) state and the denatured state. For a certain protein $\Delta H^{\circ} = 512$ kJ mol⁻¹ and $\Delta S^{\circ} = 1.60$ kJ K⁻¹ mol⁻¹ for the native to denatured process. At what temperature does denaturation becomes spontaneous?
- 3. The standard state in biochemistry is slightly different than in Physical Chemistry. In biochemistry the hydrogen-ion concentration for the standard state is 10^{-7} M, because the physiological pH is about 7. Because of this change in the standard state of the concentration of H⁺, we will employ a slightly different notation for the standard change in Gibbs Free Energy (ΔG°).

Many chemical and biological reactions are not spontaneous ($\Delta G > 0$). However, in certain cases, these reactions become spontaneous when they are coupled with a spontaneous process.

(a) For example consider the following reaction:

$$A \rightleftharpoons B + C \qquad \Delta G^{*'} = 21 \text{ kJ mol}^{-1}$$
$$B \rightleftharpoons D \qquad \Delta G^{*'} = -34 \text{ kJ mol}^{-1}$$

- i. Is the process $A \rightleftharpoons B + C$ spontaneous?
- ii. Determine the $\Delta G^{*'}$ for the process A \rightleftharpoons C + D. Is this process spontaneous?
- (b) The conversion of glucose to glucose-6-phosphate in glycosis is catalysed by a family of enzymes called hexokinases. The $\Delta_r G^{e'}$ for this reaction is

glucose + $P_i \implies$ glucose - 6-phosphate + H₂O; $\Delta_r G^{\diamond\prime} = 13.8 \text{ kJ mol}^{-1}$

- i. Is this process spontaneous?
- ii. In order for this process to be spontaneous, ATP must be consumed

 $ATP + H_2O \Longrightarrow ADP + P_i; \Delta_r G^{*\prime} = -30.3 \text{ kJ mol}^{-1}$

Write the balanced chemical equation for the conversion of glucose to glucose-6-phosphate coupled with the conversion of ATP to ADP and determine the $\Delta_r G^{*'}$ for the coupled reaction. Is this process now spontaneous?

- 4. Benzene is an important organic chemical compound given that it is an elementary petrochemical used to synthesize more complex structures.
 - (a) Given that the normal (i.e. p = 1 atm) boiling temperature of benzene is 355.9 K and the vapour pressure of liquid benzene is 1.10×10^4 Pa at 20.0°C, show that its $\Delta_{vap}H = 30.7$ kJ mol⁻¹
 - (b) A triple point of a given compound can be found when the vapour pressure of the solid state and the liquid state are equal. Given that $\Delta_{fus}H = 9.95$ kJ mol⁻¹ and the vapour pressure of solid benzene is 137 Pa at -44.3° C, determine the triple point temperature and pressure of benzene.

Homework

- 5. A quantity of 0.35 moles of an ideal gas initially at 288.8 K is expanded from 1.2 L to 7.4 L. Calculate the values of w, q, ΔU , ΔS and ΔG if the process is carried out
 - (a) Isothermally and reversibly (w = -1530 J; q = 1530 J; $\Delta U = 0$ J; $\Delta S = 5.3$ J K⁻¹; $\Delta G = -1530$ J)
 - (b) Isothermally and irreversibly against an external pressure of 1.0 atm (w = -630 J; q = 630 J; $\Delta U = 0$ J; $\Delta S = 5.3$ J K⁻¹; $\Delta G = -1530$ J)
- 6. Determine the values for $\Delta_r G^{\circ}$ for the following alcohol fermentation reaction ($\Delta_r G^{\circ} = -222.7 \text{ kJ mol}^{-1}$):

$$\alpha$$
-D-glucose(aq) $\longrightarrow 2 C_2 H_5 OH(l) + 2 CO_2(g)$

Thermodynamic data:

- α -D-glucose(aq): $\Delta_f G^{\circ} = -914.5 \text{ kJ mol}^{-1}$
- $C_2H_5OH(l): \Delta_f G^* = -174.2 \text{ kJ mol}^{-1}$
- CO₂(g): $\Delta_f G^{\circ} = -394.4 \text{ kJ mol}^{-1}$
- 7. From the following reactions at 298 K:

fumarate²⁻ + NH₄⁺
$$\implies$$
 asparatate⁻; $\Delta_r G^{e\prime} = -36.7 \text{ kJ mol}^{-1}$
fumarate²⁻ + H₂O \implies malate²⁻; $\Delta_r G^{e\prime} = -2.9 \text{ kJ mol}^{-1}$

For the following reaction

$$malate^{2-} + NH_4^+ \Longrightarrow aspartate^- + H_2O$$

- (a) Calculate $\Delta_r G^{*'}$ for the malate to aspartate process. (-33.8 kJ mol⁻¹)
- (b) Is the malate to fumarate process spontaneous? ($\Delta G > 0$: No)
- (c) Is the malate to asparatate process spontaneous? ($\Delta G < 0$: Yes)
- 8. You are trying to better define the solid-liquid phase boundary of a new substance by performing a couple of measurements. This new substance has a molar mass of 147.2 g mol⁻¹. At its normal (i.e. p = 1 atm) melting temperature of 372 K, the densities of its solid and liquid phase are 987 and 923 kg m⁻³, respectively. If the pressure is increased to 1.0×10^7 Pa, the melting temperature increases to 385 K. Calculate Δ_{fus} H for this substance. ($\Delta_{fus}H = 2.97 \times 10^3$ J mol⁻¹)

- 9. Butane is an important fuel used in many application including lighter fuel for camping stoves. Its enthalpy of vaporization is 22.4 kJ mol⁻¹ and its normal boiling temperature (1 atm) is 272.7 K. Its enthalpy of fusion is 4.66 kJ mol⁻¹ and the vapour pressure of the solid is 0.21 Pa at 120 K.
 - (a) Determine the temperature that butane will boil at the summit of Mt Everest if the pressure is 32 kPa. (244.2 K)
 - (b) A triple point of a given compound can be found when the vapour pressure of the solid state and the liquid state are equal. Determine the triple point temperature and pressure of butane. (134.9 K; 4.2 Pa)