CHEM 361A - Lecture 9 Activity Mixtures

In Class

- 1. Why is the preferred standard state for the solvent in a real dilute solution the Raoult's Law standard state? Why is the preferred standard state for the solute in a real dilute solution the Henry's Law standard state? Is there a preferred standard state for the solution in which $x_{solvent} = x_{solute} = 0.5$?
- 2. You have an acetone- CS_2 solution. where the following data has been collected

$x_{\rm CS_2}$	p_{CS_2} (kPa)	$p_{acetone}$ (kPa)	p_{total} (kPa)
0	0	45.7	45.7
0.1991	36.3	38.7	75.0
0.3502	47.8	35.2	83.0
0.4933	53.8	32.4	86.2
0.6161	57.1	30.1	87.1
0.8280	62.0	24.0	86.0
1.0000	68.3	0	68.3

Table 1: Partial and Total Pressures above a CS_2 -Acetone Solution

- (a) Sketch a pressure vs mole fraction of $CS_2(x_{CS_2})$ plot with p_{CS_2} , $p_{acetone}$, and p_{total} .
- (b) On this same plot, indicate for CS₂ the prediction of the partial pressure according to Raoult's Law and the Henry's Law.
- (c) Calculate the activity of the CS₂ at $x_{CS_2} = 0.3502$ according to Raoult's Law and Henry's Law. Use $K_{H,CS_2} = 233.3$ kPa.
- (d) What is the activity coefficient for CS_2 assuming a Raoult's Law standard state, and the Henry's Law standard state?
- (e) Which model (Raoult or Henry) would be appropriate to use as the standard state for $x_{CS_2} = 0.3502$?

Homework

3. The symptoms induced by the release of air into the bloodstream are known to divers as the bends. Let's assume that the average human with a body weight of 70 kg has a blood volume of 5.0 L. The Henry's Law constant for the solubility of N₂ in H₂O is 9.04×10^4 bar at 298 K. Assume that this is also the value of the Henry's Law constant for blood, that the density of blood is 1.00 kg L⁻¹, that blood's molar mass is the same as water, and that the N₂ behaves ideally.

- (a) Calculate the number of moles of nitrogen absorbed in this amount of blood in air of composition of 80% N₂ at sea level where the pressure is 1 bar, and at a pressure of 50 bar. $(n_{N_2}(1 \text{ bar}) = 2.46 \times 10^{-3} \text{ moles}; n_{N_2}(50 \text{ bar}) = 0.123 \text{ moles})$
- (b) Assume that a diver accustomed to breathing compressed air at a pressure of 50 bar is suddenly brought to sea level. What volume of N_2 gas is released as bubbles in the diver's bloodstream? (V = 3.7 L)