Ions in Solution CHEM 361A: Introduction to Physical Chemistry

Dr. Michael Groves

Department of Chemistry and Biochemistry California State University, Fullerton

Lecture 12

Table of contents

2 Debye-Hückel

- Limiting Law
- Davies Equation

Salting-in/Salting-out

Learning Objective: Quantify the activity coefficient for ionic solutions and apply it to sparingly soluble salts.

References:

- Atkins and de Paula Focus 5G and 5H
- Chang $\S8.4$ and $\S8.5$

μ for an Electrolyte in Solution

Electrolyte solutions (molecules that break down into charged ions in solution) deviate from ideal conditions at low concentrations.

• Coulombic forces between ions cause long range interactions For real solutions we write activities as

$$a_J = \gamma_J \frac{m_J}{m^{\diamond}}$$

where

- m° is 1 mol kg⁻¹ (molality is temperature independent)
- γ_J is the **activity coefficient**. It quantifies the degree to which the solute is non-ideal.

• As $m_J
ightarrow 0$ then $\gamma_J
ightarrow 1$

Having defined the activity of the solute, we can write

$$\mu_J = \mu_J^{\circ} + RT \ln a_J$$

Determining the Activity Coefficient γ_J

Consider the dissociation of table salt in water

$$NaCl(s) + H_2O(l) \Longrightarrow Na^+(aq) + Cl^-(aq)$$

The activities for this process are

$$egin{aligned} & \mathbf{a}_{\mathrm{Na}^+} = & \gamma_+ rac{m_{\mathrm{Na}^+}}{m^{lpha}} \ & \mathbf{a}_{\mathrm{Cl}^-} = & \gamma_- rac{m_{\mathrm{Cl}^-}}{m^{lpha}} \end{aligned}$$

However, no procedure currently exists to measure γ_J since separating the effect of the cation from the anion is not possible.

• They both occur simultaneously and are not easily separated

Determining the Average Activity Coefficient γ_{\pm}

Consider a salt $M_{\nu_+}X_{\nu_-}$, where M forms the positive ion and X forms the negative ion. The Gibbs Free Energy for the salt is

 $G = n_+\mu_+ + n_-\mu_-$

Using the definition of the chemical potential for non-ideal dilute solutions

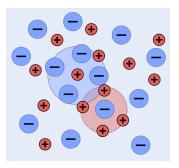
$$\mu_J = \mu_J^{\circ} + RT \ln a_J; \quad a_J = \gamma_J \frac{m_J}{m^{\circ}}$$

It can be shown that an **average activity coefficient**, γ_{\pm} , can be defined as:

$$\gamma_{\pm}^{\nu_{+}+\nu_{-}} = \gamma_{+}^{\nu_{+}}\gamma_{-}^{\nu_{-}}$$

such that
$$G = n_{+} \left(\mu_{+}^{\oplus} + RT \ln \left(\gamma_{\pm} \frac{m_{+}}{m^{\oplus}} \right) + n_{-} \left(\mu_{-}^{\oplus} + RT \ln \left(\gamma_{\pm} \frac{m_{-}}{m^{\oplus}} \right) \right)$$

Average Activity Coefficient Example


Suppose we were able to measure the activity coefficients for Na⁺ (0.98) and SO₄²⁻ (0.84) when Na₂SO₄ is dissolved in water to form a 0.01 mol kg⁻¹ solution. Determine

- () the average activity coefficient, γ_{\pm}
- 2 the activities of each ion, a_{Na^+} and $a_{\mathrm{SO4}^{2-}}$, using γ_{\pm}

Debye-Hückel Limiting Law

Peter Debye and Erich Hückel developed a theory to determine the average activity coefficient

- Assumed that each charge was surrounded by a cloud of opposite charge
- This lowers the potential energy of the system
- Quantified as $\gamma_{\pm} < 1$
- Law becomes more valid as the concentration of the ions approaches zero
- When the concentration of ions in solution are large, then empirical modifications should be employed

Debye-Hückel Limiting Law (cont.)

The Debye-Hückel Limiting Law is

$$\log \gamma_{\pm} = -A |z_{+}z_{-}| I^{\frac{1}{2}}$$

where

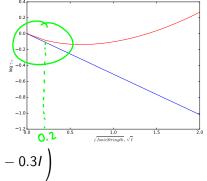
- A is a constant (for water at 25° C, A = 0.509)
- z_{\pm} is the charge of the positive/negative ion
- I is the ionic strength of the solution and is defined in terms of the molalities of *all ions* in the solution

$$I = \frac{1}{2} \sum_{i} \frac{z_i^2 m_i}{m^{\text{o}}}$$

Limiting Law Davies Equation

Using the Debye-Hückel Limiting Law

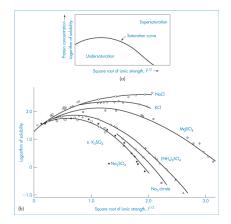
Estimate the mean activity coefficient for the ions of a 0.0010 mol kg^{-1} solution of Na_2SO_4(aq) at 25°C.


Limiting Law Davies Equation

Extended Debye-Hückel Law

• The Debye-Hückel Limiting Law is only for dilute solutions (low I).

$$\log \gamma_{\pm} = -A |z_{+}z_{-}| I^{\frac{1}{2}}$$


 The Davies Equation is an empirical correction to fit the data better at high I

$$\log \gamma_{\pm} = -0.509 |z_{+}z_{-}| \left(rac{I^{rac{1}{2}}}{1+I^{rac{1}{2}}} - 0.3I
ight)$$

Varying the Solubility of an Ionic Solution

The ionic strength of a solution can directly affect the solubility of a substance. This is called salting-in and salting-out.

Sparingly Soluble Compounds Example

A sparingly soluble compound is something that dissolves only slightly in water. Take for example:

$$MgF_2(s) \Longrightarrow Mg^{2+}(aq) + 2F^{-}(aq); \quad K_{sp} = 6.4 \times 10^{-9}$$

- If enough MgF₂(s) is used to saturate a solution of 1 kg of water determine the equilibrium concentration of the ions.
- At equilibrium, 0.01 M KNO₃ (a very soluble salt) is added to the MgF₂ solution. What is the new concentration of the dissolved MgF₂?
- At equilibrium, 2.0 M KNO₃ (a very soluble salt) is instead added to the MgF_2 solution. What is the new concentration of the dissolved MgF_2 ?

Summary

- lons in solution deviate properties of mixtures from ideal conditions
- The deviation is quantified in the average activity coefficient which can be calculated using
 - The Debye-Hückel Limiting Law (low ionic strength)

$$\log \gamma_{\pm} = -A \mid z_+z_- \mid I^{\frac{1}{2}}$$

• The Davies Equation (high ionic strength - \sqrt{l} > 0.2)

$$\log \gamma_{\pm} = -0.509 |z_{+}z_{-}| \left(\frac{I^{\frac{1}{2}}}{1+I^{\frac{1}{2}}} - 0.3I \right)$$