Mixtures

CHEM 361A: Introduction to Physical Chemistry

Dr. Michael Groves

Department of Chemistry and Biochemistry California State University, Fullerton

Lecture 9

 \leftarrow

 Ω

Table of contents

- 1 [Chemical Potential](#page-2-0)
- 2 [Ideal Solutions](#page-6-0)
	- [Raoult's Law](#page-6-0)
- 3 [Real Solutions](#page-10-0)
	- **•** [Activity](#page-10-0)
	- [Henry's Law](#page-11-0)

Learning Objective: Define the chemical potential for components in mixtures in order to discuss their properties.

References:

- Atkins and de Paula Focus 4C and 4D
- Chang $§7.1 \$7.5$

[Chemical Potential](#page-2-0) [Ideal Solutions](#page-6-0) [Real Solutions](#page-10-0)

The Chemical Potential

Single Component System

Multi Component System

$$
G = n_R \mu_R + n_B \mu_B + n_G \mu_G
$$

where:

$$
G_m=\frac{G}{n}
$$

where:

$$
\mu_J = \left(\frac{\partial G}{\partial n_J}\right)_{T,P,n_{other}}
$$

 \Box

 $2Q$

Applying Chemical Potentials to Mixtures of Gases Setup

We previously determined that the molar Gibbs Free Energy for a pure gas at constant Temperature varies with pressure according to

$$
G_m(p_f) = G_m(p_i) + RT \ln\left(\frac{p_f}{p_i}\right)
$$

We will set

- \bullet p_f to p: the pressure of interest
- p_i to p^{\div} : 1 bar
- $G_m(p_i)$ to be G_m^{\oplus}

which gives:

$$
G_m(p) = G_m^{\circ} + RT \ln\left(\frac{p}{p^{\circ}}\right)
$$

Applying Chemical Potentials to Mixtures of Gases

For a mixture of gases, we use the chemical potential to describe gas J's contribution to the total Gibbs Free energy according to:

$$
\mu_J(g) = \mu_J^{\circ}(g) + RT \ln\left(\frac{p_J}{p^{\circ}}\right)
$$

where p_i is interpreted to be the partial pressure of gas J.

So the more of gas J that's in the system, the larger its chemical potential and the more potential for that component to contribute chemically.

Chemical Potential Examples

- **1** Suppose that the partial pressure of a perfect gas falls from 100 kPa to 50 kPa as it is consumed in a reaction at 25° C. What is the change in chemical potential of the substance?
- ² Suppose we have two gases at the same pressure and temperature in a box separated by an impermeable membrane. Show that it is spontaneous that the gases will mix.

Ideal Volatile Solutions

Ideal solutions follow Raoult's Law:

Raoult's Law:

The partial vapour pressure of a substance in a liquid mixture is proportional to its mole fraction in the mixture and its vapour pressure when pure:

$$
p_J = x_J p_J^*
$$

where ρ_J^* is the vapour pressure of the pure substance.

[Chemical Potential](#page-2-0) [Ideal Solutions](#page-6-0) [Real Solutions](#page-10-0) [Raoult's Law](#page-6-0)

Raoult's Law and Chemical Potentials

Raoult's law allows us to quantify the chemical potential, μ_L of each component of a solution based on their vapour pressure. Starting from pure components (denoted by the asterisk) and assuming that the vapour and liquid phases are at equilibrium:

$$
\mu_J^*(I) = \mu_J^*(g) = \mu_J^{\circ}(g) + RT \ln \frac{p_J^*}{p^{\circ}}
$$

Rearranging this to solve for μ_J^\oplus gives

$$
\mu_J^\circ = \mu_J^*(I) - RT \ln \frac{p_J^*}{p^\circ}
$$

For each component in a binary mixture, as we vary the mole fraction

$$
\mu_J(I) = \mu_J(g) = \mu_J^{\circ}(g) + RT \ln \frac{p_J}{p^{\circ}}
$$

 Ω

[Chemical Potential](#page-2-0) [Ideal Solutions](#page-6-0) [Real Solutions](#page-10-0) [Raoult's Law](#page-6-0)

Raoult's Law and Chemical Potentials (cont.)

Since μ_J^\oplus is the same in both cases (pure and mixed) then

$$
\mu_J(I) = \mu_J^*(I) - RT \ln \frac{p_J^*}{p^{\circ}} + RT \ln \frac{p_J}{p^{\circ}}
$$

$$
= \mu_J^*(I) + RT \ln \frac{p_J}{p_J^*}
$$

According to Raoult's Law

$$
x_J = \frac{p_J}{p_J^*}
$$

Therefore,

$$
\mu_J(I) = \mu_J^*(I) + RT \ln x_J
$$

 Ω

Further reading on Raoult's Law: [LibreText - Raoult's Law 1](http://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Equilibria/Phase_Equilibria/6%3A_Raoult) [LibreText - Raoult's Law 2](http://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Physical_Properties_of_Matter/Solutions_and_Mixtures/Ideal_Solutions/Changes_In_Vapor_Pressure%2C_Raoult)

Ideal Solution Examples

- \bullet What is the change in chemical potential of benzene at 25 \degree C caused by a solute that is present at a mole fraction of 0.10?
- ² Show that the mixing of an ideal solution is spontaneous.

Real Solutions

Raoult's Law is only valid for a small number of mixtures (typically those whose components are very similar).

To account for the deviation from ideal conditions we will define something called its **activity**, in the context of Raoult's Law, as

$$
a_J = \gamma_J x_J = \gamma_J \frac{p_J}{p_J^*}
$$

where γ , is the activity coefficient (deviation from ideal conditions for gases) of component J.

Since Raoult's Law is based on the pure component, in real solutions it is only applicable when $x_I \approx 1$.

Henry's Law

Given that Raoult's Law does not describe very dilute components in real solutions, the relationship between mole fraction and partial pressure is quantified by **Henry's Law**

Henry's Law

The vapour pressure of a volatile solute J is proportional to its mole fraction in a solution:

$$
p_J=a_JK_H
$$

where K_H is characteristic of the solute and chosen so that the straight line predicted by Henry's Law is tangent to the experimental curve at $a_j = 0$.

つくい

Henry's Law Example

Calculate the molal solubility of carbon dioxide in water at 298 K and a CO $_2$ pressure of 3.3 \times 10^{-4} atm, which corresponds to the partial pressure of CO₂ in air. Assume $\mathcal{K}_H = 1.63 \times 10^3$ atm.

[Chemical Potential](#page-2-0) [Ideal Solutions](#page-6-0) [Real Solutions](#page-10-0) **[Activity](#page-10-0) [Henry's Law](#page-11-0)**

Chemical Potential of Dilute Solutions

Henry's law allows us to quantify the chemical potential, μ_L of the dilute component of a solution based on their vapour pressure. Starting from pure components (denoted by the dagger) and assuming that the vapour and liquid phases are at equilibrium:

$$
\mu_J^{\dagger}(I) = \mu_J^{\dagger}(g) = \mu_J^{\circ}(g) + RT \ln \frac{K_{H,J}}{p^{\circ}}
$$

Where according to Henry's Law, the pressure of pure component J is $\mathcal{K}_{H,J}$. Rearranging this to solve for μ_J^\Leftrightarrow gives

$$
\mu_J^\circ = \mu_J^\dagger(I) - RT \ln \frac{K_{H,J}}{p^\circ}
$$

For each component in a binary mixture as we vary the mole fraction

$$
\mu_J(I) = \mu_J(g) = \mu_J^{\circ}(g) + RT \ln \frac{p_J}{p^{\circ}}
$$

[Chemical Potential](#page-2-0) [Ideal Solutions](#page-6-0) [Real Solutions](#page-10-0) **[Activity](#page-10-0) [Henry's Law](#page-11-0)**

Chemical Potentials of Dilute Solutions (cont.)

Since μ^{\oplus}_J is the same in both cases (pure and mixed) then

$$
\mu_J(I) = \mu_J^{\dagger}(I) - RT \ln \frac{K_{H,J}}{p^{\circ}} + RT \ln \frac{p_J}{p^{\circ}}
$$

According to Henry's Law

$$
p_J = a_J K_{H,J}
$$

Then

$$
\mu_J(I) = \mu_J^{\dagger}(I) - RT \ln \frac{K_{H,J}}{p^{\circ}} + RT \ln \frac{a_J K_{H,J}}{p^{\circ}}
$$

$$
= \mu_J^{\dagger}(I) - RT \ln \frac{K_{H,J}}{p^{\circ}} + RT \ln \frac{K_{H,J}}{p^{\circ}} + RT \ln a_J
$$

Therefore,

$$
\mu_J(I) = \mu_J^{\dagger}(I) + RT \ln a_J
$$

つくへ

Difference Between μ^* and μ^\dagger

[Chemical Potential](#page-2-0) [Ideal Solutions](#page-6-0) [Real Solutions](#page-10-0) **[Activity](#page-10-0) [Henry's Law](#page-11-0)**

- μ^* assumes the pressure of the pure component is p^* (Raoult's Law)
- μ^\dagger assumes the pressure of the pure component is $K_{H,J}$ (Henry's Law)

つくい

Both μ^* and μ^\dagger are standard states under different conditions.

Chemical Potential of Dilute Components

For dilute components we will write chemical potential in reference to the Henry's Law standard chemical potential using the standard notation:

$$
\mu_J(I) = \mu_J^{\circ}(I) + RT \ln a_J
$$

It is convenient to define the activity using molality since the mass of the solution does not change with temperature:

$$
a_J = \gamma_J \frac{m_J}{m^{\Theta}}
$$

where γ is the activity coefficient (ie deviation from ideal conditions for concentrations) and m^{\oplus} is 1 kg mol $^{-1}.$

Summary

- The molar Gibbs Free Energy of each component of a multi-component system is quantified by the chemical potential, μ
- When calculating the chemical potential under certain conditions, we calculate the deviation from a reference/standard chemical potential of the component

$$
\mu_J(g) = \mu_J^{\circ}(g) + RT \ln\left(\frac{p_J}{p^{\circ}}\right)
$$

• Raoult's Law defines the partial pressure of components in ideal mixtures as

$$
p_J = x_J p_J^*
$$

Henry's Law defines the partial pressure of dilute components in real mixtures as

$$
p_J = x_J K_H
$$

Summary (cont.)

• Since both Raoult's Law and Henry's Law are linear extrapolations in pure and dilute situations, to account for the real nature in mixtures, we use activity instead of mole fraction

$$
a_J=\gamma_J x_J
$$

For dilute components, the Henry's Law constant that relates molality to partial pressure can be used instead so the chemical potential is defined as

$$
\mu_J(I) = \mu_J^{\circ}(I) + RT \ln a_J
$$

where

$$
a_J = \gamma_J \frac{m_J}{m^{\Theta}}
$$