Rate Laws CHEM 361A: Introduction to Physical Chemistry

Dr. Michael Groves

Department of Chemistry and Biochemistry California State University, Fullerton

Lecture 15

Table of contents

2 Reaction Order

Learning Objective: Define basic rate law equations and derive integrated rate law expressions.

References:

- Atkins and de Paula Focus 6A 6C
- Chang $\S12.1$ and $\S12.2$

Spontaneity versus speed

Thermodynamics

- Tells us if a process is spontaneous
- State function nature of thermodynamic quantities allows for a big picture type analysis where only the starting reactants and final products are necessary.
- Does not tell us how long it will take to reach equilibrium

Kinetics

- Tells us how fast a process occurs
- A given reaction might involve multiple steps.
 Proper kinetic analysis requires understanding individual reaction mechanisms to gain an overall grasp of a chemical reaction
- Can tell us equilibrium constants as well as how long it takes to get to equilibrium

Reaction Rates

Consider the following reaction:

 $\mathsf{a}\mathsf{A}+\mathsf{b}\mathsf{B} \longrightarrow \mathsf{c}\mathsf{C}+\mathsf{d}\mathsf{D}$

The number of moles of species i will vary by

$$n_i = n_{i_0} + \nu_i \zeta$$

where

- n_{i_0} is the initial number of moles for species i
- ν_i is the stoichiometric coefficient of species *i*
- ζ is the advancement of the reaction
- *n_i* is the amount of species *i* present given the advancement of the reaction

Reaction Rates Reaction Order Integrated Rate Law

Reaction Rates (cont.)

Consider the following reaction:

 $\mathsf{aA} + \mathsf{bB} \longrightarrow \mathsf{cC} + \mathsf{dD}$

The number of moles of species i will decrease by

 $n_i = n_{i_0} + \nu_i \zeta$

If we were to take the derivative of n_i with respect to time then:

$$\frac{dn_i}{dt} = \nu_i \frac{d\zeta}{dt}$$

If we then rearrange

$$rate = \frac{d\zeta}{dt} = \frac{1}{\nu_i} \frac{dn_i}{dt}$$

Reaction Rate of All Four Species

Still considering the following generalised reaction:

 $\mathsf{aA} + \mathsf{bB} \longrightarrow \mathsf{cC} + \mathsf{dD}$

write the rate in terms of all four species.

$$rate = -\frac{1}{a}\frac{dn_A}{dt} = -\frac{1}{b}\frac{dn_B}{dt} = \frac{1}{c}\frac{dn_C}{dt} = \frac{1}{d}\frac{dn_D}{dt}$$

Now instead of writing them in terms of moles, write them in terms of concentration

$$rac{Rate}{V} = rac{1}{V
u_i} rac{dn_i}{dt} = rac{1}{
u_i} rac{d[i]}{dt}$$

Reaction Order

Still considering the following generalised reaction:

$$\mathsf{aA} + \mathsf{bB} \xrightarrow{k_f} \mathsf{cC} + \mathsf{dD}$$

The rate can also be determined empirically

$$rate = -rac{1}{a}rac{d[A]}{dt} = k_f[A]^{ imes}[B]^{ imes}$$

where k_f is the **rate constant** for the forward reaction. Note

- The **order** of each component is the power it is raised to (fx. x and y)
- The overall order of the reaction is the sum of all powers (x + y)
- The orders are not related to the stoichiometric coefficients in the overall balanced reaction

Examples in Reaction Order

2

3

For the following rate laws, write down the order of each component and the total order:

$$rate = [A]^{2}[B]$$

 $rate = [A]^{rac{1}{2}}[B]^{3}$
 $rate = rac{k_{r}[E][S]}{[S] + K_{M}}$

Integrated Rate Law Expressions

Given a reaction

the order of a reaction
tial conditions, we can
ate law expressions,
t the concentration of
t any time.
$$\frac{d[A]}{dt} = -k_f[A]^{\times} \rightarrow \int_{[A]_0}^{[A]} \frac{d[A]}{[A]^{\times}} = \int_0^t -k_f dt$$

990

 $A \xrightarrow{k_f} P$

1.0

Zero-Order Reactions

Consider the reaction

$$A \xrightarrow{k_f} P$$

If the rate is given by:

$$rate = -\frac{d[A]}{dt} = k_f [A]^0 = k_f$$

Then the rate is independent of [A] and can be found at any time, t, using:

$$[A] = [A]_0 - k_f t$$

590

First Order Reactions

Again consider the reaction

$$A \xrightarrow{k_f} P$$

If the rate is given by:

$$rate = -rac{d[A]}{dt} = k_f[A]$$

Then the rate is dependent on [A] and [A] can be found at any time, t, using:

$$\ln[A] = \ln[A]_0 - k_f t$$

Second Order Reactions (type 1)

Again consider the reaction

$$A \xrightarrow{k_f} P$$

If the rate is given by:

$$rate = -rac{d[A]}{dt} = k_f[A]^2$$

then the rate is dependent on [A] and [A] can be found at any time, t, using:

$$\frac{1}{[A]} = \frac{1}{[A_0]} + k_f t$$

Reaction Rates Reaction Order Integrated Rate Law

Second Order Reactions (type 2)

Again consider the reaction

$$A + B \xrightarrow{k_f} P$$

If the rate is given by:

$$rate = -\frac{d[A]}{dt} = k_f[A][B]$$

then the rate is dependent on both [A] and [B] where the concentration of both can be found at any time, t, using:

$$\frac{1}{[B]_0 - [A]_0} \ln \frac{[B][A]_0}{[A][B]_0} = kt$$

A Note on Simplifying Complicated Rate Laws

Consider the reaction

$$CH_3COCI(aq) + H_2O(I) \xrightarrow{k_f} CH_3COOH(aq) + HCI(aq)$$

The rate is governed by the second order expression:

$$rate = -\frac{d[CH_3COCl]}{dt} = k_f[CH_3COCl][H_2O]$$

However, H_2O is in large excess so its concentration will not change as the reaction progresses. Therefore

$$rate = -\frac{d[CH_3COCl]}{dt} = k'_f[CH_3COCl];$$
 where $k'_f = k_f[H_2O]$

Now we can solve this as a first order reaction.

Strategies to Find Orders

We can use empirical data as well as rate law and integrated rate law expressions to determine the order of components

- Isolation Method Keep all the [reactant's] constant except one which simplifies the rate law to a single component
- Integration Method Measure the concentration of the components at various times and evaluate the data with each rate law. Not very accurate.
- Oifferential Method Starting with the rate law, take the logarithm to both sides and solve for the orders
- Half-life Method Measuring how long it takes for half the concentration to remain is dependent on the order of the reaction.

Example of the Differential Method

Consider the following reaction:

$$A + B \longrightarrow C$$

determine the order of the reaction with respect to A and B, as well as the rate constant for the reaction:

[A] (M)	[B] (M)	Initial Rate (M s ^{-1})
$2.30 imes10^{-4}$	$3.10 imes10^{-5}$	$5.25 imes10^{-4}$
$4.60 imes10^{-4}$	$6.20 imes10^{-5}$	$4.20 imes10^{-3}$
$9.20 imes10^{-4}$	$6.20 imes10^{-5}$	$1.68 imes10^{-2}$

Example of the Half-Life Method

The half-life of certain orders of reactions are:

Order	Expression
0	$t_{1/2} = [A]_0/2k$
1	$t_{1/2} = \ln 2/k$
2 (type 1)	$t_{1/2} = 1/k[A]_0$

For the reaction

 $\mathsf{A} \longrightarrow \mathsf{B}$

when the concentration of A was change from 1.20 M to 0.6 M, the half-life increased from 2.0 mins to 4.0 mins at 25° C. Calculate the order of the reaction and the rate constant.

Summary

- Rate laws are empirical expressions used to describe how components in a reaction change with time
- When integrated, the integrated rate law expressions can be used to predict the concentration of each component at a given time.
- These expressions can be used to determine the order of a reagent, which quantifies how influential a given component is to the overall reaction.
- The order also determines the component's half-life, the time it takes for half of the original amount to be left.